

Eylon Caplan

Email: ecaplan@purdue.edu Website: eyloncaplan.github.io GitHub: [@eyloncaplan](https://github.com/eyloncaplan) LinkedIn: [@eyloncaplan](https://www.linkedin.com/in/eyloncaplan)

EDUCATION	Purdue University , West Lafayette, Indiana, USA Ph.D. in Natural Language Processing, Department of Computer Science	(expected) 2027 3.8/4.0
	University of Nebraska–Lincoln , Lincoln, Nebraska, USA B.S. in Computer Science and Mathematics (Minors: Physics, Spanish)	2023 3.99/4.0
SKILLS	AI, Machine Learning, Natural Language Processing, LLMs, VLMs, Information Retrieval, RAG, Reinforcement Learning, Big Data, Multiprocessing, Benchmarking, Software Engineering, Deep Learning, Generative AI Python, Jupyter, Pandas, NumPy, PyTorch, HuggingFace, Transformers, LangChain, ColBERT, pyserini, BERTopic, Dask, Docker, FAISS, Flask, Git, Hydra, Kubernetes, lmdeploy, SLURM, Scripting	
PUBLICATIONS	CONCEPTCARVE: Dynamic Realization of Evidence Eylon Caplan and Dan Goldwasser ACL 2025 Main Conference Poster, Vienna, Austria on July 26–August 2 VIBE: Can a VLM Read the Room? Tania Chakraborty, Eylon Caplan, and Dan Goldwasser Findings of EMNLP 2025 Poster, Suzhou, China on November 5–9 SPLITS! Flexible Sociocultural Linguistic Investigation at Scale Eylon Caplan, Tania Chakraborty, and Dan Goldwasser Under review TAIGR: Towards Modeling Influencer Content on Social Media via Structured, Pragmatic Inference Nishanth Sridhar Nakshatri, Eylon Caplan, Rajkumar Pujari, and Dan Goldwasser Under review	
RESEARCH EXPERIENCE	Graduate Research Assistant, Purdue NLP Lab (Advisor: Dan Goldwasser) <i>Developing NLP frameworks to model and improve social reasoning in large-scale online communities.</i> <ul style="list-style-type: none">- Built CONCEPTCARVE, a framework uniting LLM reasoning with scalable retrieval, reranking, and clustering to capture abstract concepts manifesting in social communities, achieving a 26.03% relative improvement over LLM keyword expansion.- Engineered a multiprocessing pipeline to build SPLITS!, a 9.7M-post dataset spanning diverse demographic groups, utilizing LLMs and BERT embeddings for automated hypothesis discovery. Developed a novel semantic ranking metric for 23,000+ candidates, reducing manual verification time by 15–18x.- Exposed the “Visual Social-Pragmatic (VSP) Inference gap” in VLMs, where multimodal models misinterpret social visual cues, such as a sad smile. To measure this, created VIBE, a 994-instance benchmark dataset of human-annotated video clips that isolate this specific reasoning failure.	2023–Present
INDUSTRY EXPERIENCE	Software Engineering Intern, Hudl Developed and deployed a CV pipeline using PyTorch to perform OCR on basketball scoreboards from live video. Integrated the service into production environment, with real-time overlays for live streaming on HudlTV.	2022– 2023
TEACHING AND CURRICULUM DESIGN	Course Developer, Purdue University <ul style="list-style-type: none">- Designed a module and four-part project about the RAG pipeline for the <i>AI Forge</i> course. Project included parts teaching model inference, prompting, in-context learning, retrieval, and retrieval augmentation. Also designed an evaluation pipeline of student code on computing cluster.- Designed assignments and course content for a new course, <i>Data Structures and Algorithms for AI</i>. Created four course projects, covering topics like trees, stacks, queues, big data hashing, fuzzy word search, and graphs.	2023– 2025
KEY COURSES	Graduate Level: Advanced Topics in Reasoning with LLMs, NLP, Deep Learning, Reasoning about Programs	
KEY COURSE PROJECTS	LLM Feedback for Proofs Tested various methods of injecting feedback from an LLM in order to generate correct symbolic proofs in the Isabelle proof solver for competition math problems. Course project for <i>Adv. Topics in Reasoning with LLMs</i> . Math Expression Style Transfer Developed an LLM BFS algorithm for converting math expressions into various simplified/expanded forms using only examples, with guaranteed equivalence. Course project for <i>Reasoning about Programs</i> .	May 2023–Dec 2023 Aug 2024–Dec 2024
AWARDS	Corporate Partners Scholarship Purdue Science Excellence Scholarship	2023– 2024 2023– 2024